您的位置 首页 智能家居

连接8大神经网络+可视化手段!OpenAI让神经元能被“看见”

Open AI推出神经元可视化库Microscope,能帮助研究者理解神经网络的内部结构。

连接8大神经网络+可视化手段!OpenAI让神经元能被“看见”

智东西(公众号:zhidxcom)
编 | 董温淑

智东西4月15日消息,4月14日,非营利人工智能研究组织Open AI推出神经元可视化库Microscope,有助于提升AI研究者对神经网络的理解。

现代神经网络由成千上万的神经元组成,神经活动就是神经元间的相互协作过程。解释神经元间的相互作用一直是AI研究者的一大目标。

Microscope神经元可视化库基于8个常用或重要的视觉神经网络,收集了其中每一个重要的层级和神经元,使分析神经网络的内部特征更加容易。

如同在实验室中用显微镜能更清晰地观察到细节,它也能使AI研究者更好地理解有成千上万个神经元的神经网络的结构和行为。

一、连接8大神经网络,可视化呈现神经元

8个神经网络分别是:AlexNet(2012年ImageNet挑战赛冠军),AlexNet(Places),Inception v1(又称GoogleNet,2014年ImageNet挑战赛冠军),Inception v1(Places),VGG 19,Inception v3,Inception v4,ResNet v2 50。每个神经网络中都有许多图像,在创作共用授权条款下,可以在OpenAI lucid程序库中重复使用。

连接8大神经网络+可视化手段!OpenAI让神经元能被“看见”

连接8大神经网络+可视化手段!OpenAI让神经元能被“看见”

连接8大神经网络+可视化手段!OpenAI让神经元能被“看见”

Microscope模型把神经网络层当作“节点(node)”,“节点”通过“边(edge)”相互连接。每个op包含数百个“单元(unit)”,大致类似于神经元。通过特征可视化、深度梦境、数据集示例、合成调整曲线等技术实现可视化效果。

研究人员称随着时间发展,图像可能会更多。但他们也指出,使用的大多数技术只有在特定情况下才有用。比如,特征可视化只能指向“单元”,但不能指向其“父节点”。

连接8大神经网络+可视化手段!OpenAI让神经元能被“看见”

▲神经元视觉化呈现

二、快速反馈,易于理解,能倒推出神经活动

研究人员基于已有的神经网络,连接所有的神经网络层和神经元,搭建出了Microscope。

这种方法有几大优势:

首先,Microscope将探索神经元的反馈时间从分钟级缩短为秒级。在发现一些未知特性时,这种快速反馈回路必不可少,比如可以帮助研究人员发现神经活动中的高-低频探测器。

其次,建立可连接的模型和神经元使研究人员既可以立即进行查阅,也可以进行更长远的研究。当研究人员在不同机构工作时,也不会对模型和神经元产生混淆。

另外,Microscope具有可访问性。相比于其他模型,它需要的访问计算量更少。但是,Microscope仍然需要几百个GPU小时,研究人员称希望能保持它的高度可理解性。

根据OpenAI 14日发表的博文,Microscope可以通过理解神经元间的联系,倒推实现神经元间的协作。

OpenAI认为,Microscope可以为那些有兴趣探索神经网络如何工作的人提供便利,但其更重要的价值在于提供长期的、共享的神经元可视化库来促进对这些模型的长期研究。

“我们也希望神经科学等相近学科的研究人员能够从中获益,可以更容易地理解这些视觉模型的内部工作。”研究人员表示。

结语:神经网络可视化是热点,未来或有更多进步

除了Microscope以外,近年来也有其他致力于使机器学习模型的活动可视化的研究。

比如,去年秋天脸书推出了Captum,可以用可视化手段理解机器学习模型所作的决策。2019年3月,OpenAI和谷歌发布了一项使机器学习算法决策可视化的开源技术。后来,谷歌又在2019年10月份发布了TensorBoard.dev,可以使机器学习模型的训练过程可视化。

通过各家公司的不断钻研,神经网络可视化技术将在未来继续进步,让我们拭目以待。

文章来源:VentureBeat,OpenAI

免责声明:文章内容不代表本站立场,本站不对其内容的真实性、完整性、准确性给予任何担保、暗示和承诺,仅供读者参考,文章版权归原作者所有。如本文内容影响到您的合法权益(内容、图片等),请及时联系本站,我们会及时删除处理。

作者: dawei

【声明】:第七手机网内容转载自互联网,其相关言论仅代表作者个人观点绝非权威,不代表本站立场。如您发现内容存在版权问题,请提交相关链接至邮箱:bqsm@foxmail.com,我们将及时予以处理。

为您推荐

无人汽车无法躲避没见过的物体?问题出在训练pipeline上

人类经常会遇到种类新颖的工具、食物或动物,尽管以前从未见过,但人类仍然可以确定这些是新物体。 与人类不同,目前最先进的检测和分割方法很难识别新型的物体,因为它们是以封闭世界的设定来设计的。它们所受的训练是定位已知种类(有标记)的物体,而把未

万字读透自动驾驶3D视觉感知算法

对于自动驾驶应用来说,最终还是需要对3D场景进行感知。道理很简单,车辆不能靠着一张图像上得到感知结果来行驶,就算是人类司机也不能对着一张图像来开车。因为物体的距离和场景的和深度信息在2D感知结果上是体现不出来的,而这些信息才是自动驾驶系统对周

自动驾驶会使共享经济再次火热吗?

自动驾驶技术的发展一直饱受争议,对于自动驾驶的未来,有一个一直绕不开的话题,那就是自动驾驶是否安全。众所周知,自动驾驶的目标是让自动驾驶汽车可以独立完成出行任务,人类将自己出行需求完全交给自动驾驶汽车,在出行过程中的娱乐需求也可以由自动驾

Cruise自动驾驶决策规划技术解析

Cruise自动驾驶决策规划控制负责人Brandon Basso本科毕业于哥伦比亚大学,博士毕业于加州大学伯克利分校,主要研究决策、机器人系统设计和软件架构、机器学习、控制理论等。曾在3D Robotics、Uber自动驾驶公司工作多年,担任重要职位,在无人机和自动驾驶领

自动驾驶汽车比七个月大的婴儿还聪明吗?

到了七个月大的时候,大多数孩子已经认识到,即使看不见物体,它们仍然存在。把一个玩具放在毯子下面,孩子会知道它的存在,他可以伸手到毯子下面把它拿回来。这种对物体恒存在的理解是正常发展的里程碑,也是现实的基本原则。 这也是自动驾驶汽车所没有的。

返回顶部